Share Email Print

Proceedings Paper

Multiresolution modeling with a JMASS-JWARS high-level architecture (HLA) federation
Author(s): Gary A. Plotz; John Prince
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Traditionally, acquisition analyses require a hierarchical suite of simulation models to address engineering, engagement, mission and theater/campaign measures of performance, measures of effectiveness and measures of merit. Configuring and running this suite of simulations and transferring the appropriate data between each model are both time consuming and error prone. The ideal solution would be a single simulation with the requisite resolution and fidelity to perform all four levels of acquisition analysis. However, current computer hardware technologies cannot deliver the runtime performance necessary to support the resulting “extremely large” simulation. One viable alternative is to “integrate” the current hierarchical suite of simulation models using the DoD's High Level Architecture (HLA) in order to support multi-resolution modeling. An HLA integration -- called a federation -- eliminates the problem of “extremely large” models, provides a well-defined and manageable mixed resolution simulation and minimizes Verification, Validation, and Accreditation (VV&A) issues. This paper describes the process and results of integrating the Joint Modeling and Simulation System (JMASS) and the Joint Warfare System (JWARS) simulations -- two of the Department of Defense's (DoD) next-generation simulations -- using a HLA federation.

Paper Details

Date Published: 4 September 2003
PDF: 7 pages
Proc. SPIE 5091, Enabling Technologies for Simulation Science VII, (4 September 2003); doi: 10.1117/12.500900
Show Author Affiliations
Gary A. Plotz, Air Force Research Lab. (United States)
John Prince, CACI International Inc. (United States)

Published in SPIE Proceedings Vol. 5091:
Enabling Technologies for Simulation Science VII
Alex F. Sisti; Dawn A. Trevisani, Editor(s)

© SPIE. Terms of Use
Back to Top