Share Email Print

Proceedings Paper

Proteins as paradigms of complex systems
Author(s): Paul W. Fenimore; Hans Frauenfelder; Robert D. Young
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The science of complexity has moved to center stage within the past few decades. Complex systems range from glasses to the immune system and the brain. Glasses are too simple to possess all aspects of complexity; brains are too complex to expose common concepts and laws of complexity. Proteins, however, are systems where many concepts and laws of complexity can be explored experimentally, theoretically, and computationally. Such studies have elucidated crucial aspects. The energy landscape has emerged as one central concept; it describes the free energy of a system as a function of temperature and the coordinates of all relevant atoms. A second concept is that of fluctuations. Without fluctuations, proteins would be dead and life impossible. A third concept is slaving. Proteins are not isolated systems; they are embedded in cells and membranes. Slaving arises when the fluctuations in the surroundings of a protein dominate many of the motions of the protein proper.

Paper Details

Date Published: 30 April 2003
PDF: 9 pages
Proc. SPIE 5110, Fluctuations and Noise in Biological, Biophysical, and Biomedical Systems, (30 April 2003); doi: 10.1117/12.500848
Show Author Affiliations
Paul W. Fenimore, Los Alamos National Lab. (United States)
Hans Frauenfelder, Los Alamos National Lab. (United States)
Robert D. Young, Northern Arizona Univ. (United States)

Published in SPIE Proceedings Vol. 5110:
Fluctuations and Noise in Biological, Biophysical, and Biomedical Systems
Sergey M. Bezrukov; Hans Frauenfelder; Frank Moss, Editor(s)

© SPIE. Terms of Use
Back to Top