Share Email Print
cover

Proceedings Paper

A self-calibrating multiband region growing approach to segmentation of single and multiband images
Author(s): David W. Paglieroni
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Image segmentation transforms pixel-level information from raw images to a higher level of abstraction in which related pixels are grouped into disjoint spatial regions. Such regions typically correspond to natural or man-made objects or structures, natural variations in land cover, etc. For many image interpretation tasks (such as land use assessment, automatic target cueing, defining relationships between objects, etc.), segmentation can be an important early step. Remotely sensed images (e.g., multi-spectral and hyperspectral images) often contain many spectral bands (i.e., multiple layers of 2D images). Multi-band images are important because they contain more information than single -band images. Objects or natural variations that are readily apparent in certain spectral bands may be invisible in 2D broadband images. In this paper, the classical region growing approach to image segmentation is generalized from single to multi-band images. While it is widely recognized that the quality of image segmentation is affected by which segmentation algor ithm is used, this paper shows that algorithm parameter values can have an even more profound effect. A novel self-calibration framework is developed for automatically selecting parameter values that produce segmentations that most closely resemble a calibration edge map (derived separately using a simple edge detector). Although the framework is generic in the sense that it can imbed any core segmentation algorithm, this paper only demonstrates self-calibration with multi-band region growing. The framework is applied to a variety of AVIRIS image blocks at different spectral resolutions, in an effort to assess the impact of spectral resolution on segmentation quality. The image segmentations are assessed quantitatively, and it is shown that segmentation quality does not generally appear to be highly correlated with spectral resolution.

Paper Details

Date Published: 18 June 2003
PDF: 11 pages
Proc. SPIE 5001, Optical Engineering at the Lawrence Livermore National Laboratory, (18 June 2003); doi: 10.1117/12.500369
Show Author Affiliations
David W. Paglieroni, Lawrence Livermore National Lab. (United States)


Published in SPIE Proceedings Vol. 5001:
Optical Engineering at the Lawrence Livermore National Laboratory
Theodore T. Saito; Monya A. Lane, Editor(s)

© SPIE. Terms of Use
Back to Top