Share Email Print
cover

Proceedings Paper

Hybrid optical-computational methodology for studies and optimization of microelectronic components
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

With the electronic industry being one of the most dynamic, in terms of new technologies, electronic packages have to be designed and optimized for new and ever more demanding applications in relatively short periods of time while satisfying electrical, thermal, and mechanical requirements, as well as cost and manufacturability. In addition, reliability and durability have to be taken into consideration. As a consequence, effective quantitative methodologies, such as optical and computational should be applied in the study and optimization of microelectronic components. In this paper, a hybridized use of nondestructive, noninvasive, remote, full field of view, quantitative opto-electronic holography techniques with computational modeling is presented. The hybridization is illustrated with a representative application, which shows that the combined use of opto-electronic holography techniques and computational modeling provides an effective engineering tool for nondestructive study and optimization of microelectronic components.

Paper Details

Date Published: 7 March 2006
PDF: 11 pages
Proc. SPIE 4101, Laser Interferometry X: Techniques and Analysis, (7 March 2006); doi: 10.1117/12.498385
Show Author Affiliations
Cosme Furlong, Worcester Polytechnic Institute (United States)
Ryszard J. Pryputniewicz, Worcester Polytechnic Institute (United States)


Published in SPIE Proceedings Vol. 4101:
Laser Interferometry X: Techniques and Analysis
Gordon M. Brown; Malgorzata Kujawinska; Werner P. O. Jueptner; Ryszard J. Pryputniewicz; Ryszard J. Pryputniewicz; Mitsuo Takeda, Editor(s)

© SPIE. Terms of Use
Back to Top