Share Email Print

Proceedings Paper

High-voltage atomic force microscopy: a new technology for nanoscale optical devices
Author(s): Yossi Rosenwaks; Michel Molotskii; Alex Agronin; Pavel Urenski; Gil Rosenman
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Reversal of the spontaneous polarization direction under an applied electric field is a basic property of ferroelectrics. However the traditional techniques used for fabrication of domain gratings have been able to produce domains not smaller then 2 micrometers. Sub-micron and nanometer scale domains may be fabricated using atomic force microscopy based techniques; however, to date there was no success in fabricating stable domains that elongate without widening throughout thick ferroelectrics. A breakthrough in the field emerged with the recent development of the high voltage atomic force microscope that enabled to obtain sub-micrometer stable domain configurations in bulk ferroelectrics. Diverse stable domain configurations were fabricated in several ferroelectric crystals like LiNbO3 and RbTiOPO4. Studying the influence of the applied high voltage, and the tip velocity on the domain strips has allowed fabricating domain gratings (with a domain width of 590 micron) useful for backward propagating quasi-phase-matched frequency conversion. It is found that string-like domains are formed due to the super-high electric field of the high voltage atomic force microscope tip. The domains, which resemble channels of an electrical breakdown, nucleate under an electric field of around 10 in a power of seven Volts per centimeter at the ferroelectric surface, and grow throughout the crystal bulk where the external electric field is practically zero. A theory explaining the shape of the formed domains shows that the driving force for the domain breakdown is the decrease of the total free energy of the system with increasing domain length.

Paper Details

Date Published: 29 April 2003
PDF: 8 pages
Proc. SPIE 5118, Nanotechnology, (29 April 2003); doi: 10.1117/12.498327
Show Author Affiliations
Yossi Rosenwaks, Tel-Aviv Univ. (Israel)
Michel Molotskii, Tel Aviv Univ. (Israel)
Alex Agronin, Tel Aviv Univ. (Israel)
Pavel Urenski, Tel-Aviv Univ. (Israel)
Gil Rosenman, Tel-Aviv Univ. (Israel)

Published in SPIE Proceedings Vol. 5118:
Robert Vajtai; Xavier Aymerich; Laszlo B. Kish; Angel Rubio, Editor(s)

© SPIE. Terms of Use
Back to Top