Share Email Print

Proceedings Paper

Effect of parameters in diode laser welding of steel sheets
Author(s): Veli Kujanpaeae; Petteri Maaranen; Tapio Kostamo
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Austenitic stainless steel sheets and ordinary cold-rolled carbon steel sheets with variable thickness were welded with 1 kW diode laser. Different weld joints were utilized. The optimal parameters for each case were determined. The joints were examined by metallography and mechanical testing. The results show that diode laser is an optimal tool for sheet metal welding, when a considerable narrow weld is aimed. The edges prepared by mechanical sheering are acceptable as the joint preparation. The tensile strength and ductility of all the joints were acceptable and on the same level or better than that of base metal. The shielding gas seems to play a much higher role than in conventional laser welding (CO2 or Nd:YAG laser welding). When using the non-oxidizing shielding gas (nitrogen or argon), the welding speed to be reached is much slower than when welding without any shielding gas. This is probably due to the increase of absorption by oxygen.

Paper Details

Date Published: 3 March 2003
PDF: 6 pages
Proc. SPIE 4831, First International Symposium on High-Power Laser Macroprocessing, (3 March 2003); doi: 10.1117/12.497964
Show Author Affiliations
Veli Kujanpaeae, Lappeenranta Univ. of Technology (Finland)
Petteri Maaranen, Haeme Polytechnic (Finland)
Tapio Kostamo, Haeme Polytechnic (Finland)

Published in SPIE Proceedings Vol. 4831:
First International Symposium on High-Power Laser Macroprocessing
Isamu Miyamoto; Kojiro F. Kobayashi; Koji Sugioka; Reinhart Poprawe; Henry Helvajian, Editor(s)

© SPIE. Terms of Use
Back to Top