Share Email Print
cover

Proceedings Paper

Characteristics of solder joints under fatigue loads using piezomechanical actuation
Author(s): Dong-Jin Shim; S. Mark Spearing
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Crack initiation and growth characteristics of solder joints under fatigue loads are investigated using piezomechanical actuation. Cracks in solder joints, which can cause failure in microelectronics components, are induced via piezoelectricity in piezo-ceramic bonded joints. Lead-zirconate-titanate ceramic plates and eutectic Sn-Pb solder bonded in a double-lap shear configuration are used in the investigation. Electric field across each piezo-ceramic plate is applied such that shear stresses/strains are induced in the solder joints. The experiments show that cracks initiate in the solder joints around defects such as voids and grow in length until they coalesce with other cracks from adjacent voids. These observations are compared with the similar thermal cycling tests from the literature to show feasibility and validity of the current method in investigating the fatigue characteristics of solder joints. In some specimens, cracks in the piezo-ceramic plates are observed, and failure in the specimens generally occurred due to piezo-ceramic plate fracture. The issues encountered in implementing this methodology such as low actuation and high processing temperatures are further discussed.

Paper Details

Date Published: 22 July 2003
PDF: 10 pages
Proc. SPIE 5045, Testing, Reliability, and Application of Micro- and Nano-Material Systems, (22 July 2003); doi: 10.1117/12.497949
Show Author Affiliations
Dong-Jin Shim, Massachusetts Institute of Technology (United States)
S. Mark Spearing, Massachusetts Institute of Technology (United States)


Published in SPIE Proceedings Vol. 5045:
Testing, Reliability, and Application of Micro- and Nano-Material Systems
Norbert Meyendorf; George Y. Baaklini; Bernd Michel, Editor(s)

© SPIE. Terms of Use
Back to Top