Share Email Print
cover

Proceedings Paper

Characteristics of laser beam welds of age-hardenable 6061-T6 aluminum alloy
Author(s): Akio Hirose; Kojiro F. Kobayashi
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Laser beam welding is attractive for joining age-hardenable aluminum alloys, because its low over-all heat input results in a narrow weld heat affected zone (HAZ), where softening caused by dissolution of age precipitates occurs. In the present work, 1mm-thick 6061-T6 aluminum alloy plates were welded using a 2.5 kW CO2 laser and it was experimentally proved that the width of the softened region in the laser beam weld was less than 1/7 that of a TIG weld. Moreover the hardness in the softened region of the laser beam weld was found to be almost fully recovered to the base metal hardness by applying a post-weld aging treatment at 443 K for 28.8 ks without solution annealing unlike the TIG weld. These results characterize the advantage of laser beam welding in joining of the age-hardenable aluminum alloy as compared with the conventional arc welding. The hardness distributions in the HAZ were theoretically evaluated based on kinetic equations describing the dissolution of hardening β' (Mg2Si) precipitates and the precipitation of non-hardening β' (Mg2Si) precipitates during the weld thermal cycles to quantitatively prove above mentioned advantageous characteristics of laser beam welding.

Paper Details

Date Published: 3 March 2003
PDF: 6 pages
Proc. SPIE 4831, First International Symposium on High-Power Laser Macroprocessing, (3 March 2003); doi: 10.1117/12.497791
Show Author Affiliations
Akio Hirose, Osaka Univ. (Japan)
Kojiro F. Kobayashi, Osaka Univ. (Japan)


Published in SPIE Proceedings Vol. 4831:
First International Symposium on High-Power Laser Macroprocessing
Isamu Miyamoto; Kojiro F. Kobayashi; Koji Sugioka; Reinhart Poprawe; Henry Helvajian, Editor(s)

© SPIE. Terms of Use
Back to Top