Share Email Print
cover

Proceedings Paper

Optical MEMS-based arrays
Author(s): Paul B. Ruffin
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Industrial Micro Electro Mechanical Systems (MEMS) developers are rapidly bringing to demonstration inertial radio frequency, and optical MEMS devices and components. The Army has a requirement for compact, highly reliable, and inexpensive laser beam steering components for missile seekers and unmanned aerial vehicles remote sensing components to provide a fast scanning capability for pointing, acquisition, tracking, and data communication. The coupling of this requirement with recent developments in the micro-optics area, has led scientists and engineers at the Army Aviation and Missile Command (AMCOM) to consider optical MEMS-based phased arrays, which have potential applications in the commercial industry as well as in the military, as a replacement for gimbals. Laser beam steering in commercial applications such as free space communicataion, scanning display, bar-code reading, and gimbaled seekers; require relatively large monolithic micro-mirrors to accomplish the required optical resolution. The Army will benefit from phased arrays composed of relatively small micro-mirrors that can be actuated through large deflection angles with substantially reduced volume times. The AMCOM Aviation and Missile Research, Development, and Engineering Center (AMRDEC) has initiated a research project to develop MEMS-based phased arrays for use in a small volume, inexpensive Laser Detection and Ranging (LADAR) seeker that is particularly attractive because of its ability to provide large field-of-regard and autonomous target acquisition for reconnaissance mission applications. The primary objective of the collaborative project with the Defence Advanced Research Projects Agency (DARPA) is to develop a rugged, MEMS-based phased arrays for incorporation into the 2-D scanner of a LADAR seeker. Design challenges and approach to achieving performance requirements will be discussed.

Paper Details

Date Published: 22 July 2003
PDF: 12 pages
Proc. SPIE 5055, Smart Structures and Materials 2003: Smart Electronics, MEMS, BioMEMS, and Nanotechnology, (22 July 2003); doi: 10.1117/12.497452
Show Author Affiliations
Paul B. Ruffin, U.S. Army Aviation and Missile Command (United States)


Published in SPIE Proceedings Vol. 5055:
Smart Structures and Materials 2003: Smart Electronics, MEMS, BioMEMS, and Nanotechnology
Vijay K. Varadan; Laszlo B. Kish, Editor(s)

© SPIE. Terms of Use
Back to Top