Share Email Print

Proceedings Paper

Full-complex spatial filtering with a phase mostly DMD
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A new technique for implementing fully complex spatial filters with a phase mostly deformable mirror device (DMD) light modulator is described. The technique combines two or more phase-modulating flexure-beam mirror elements into a single macro-pixel. By manipulating the relative phases of the individual sub-pixels within the macro-pixel, the amplitude and the phase can be independently set for this filtering element. The combination of DMD sub-pixels into a macro-pixel is accomplished by adjusting the optical system resolution, thereby trading off system space bandwidth product for increased filtering flexibility. Volume in the larger dimensioned space, space bandwidth-complex axes count, is conserved. Experimental results are presented mapping out the coupled amplitude and phase characteristics of the individual flexure-beam DMD elements and demonstrating the independent control of amplitude and phase in a combined macro-pixel. This technique is generally applicable for implementation with any type of phase modulating light modulator.

Paper Details

Date Published: 11 November 1991
PDF: 12 pages
Proc. SPIE 1558, Wave Propagation and Scattering in Varied Media II, (11 November 1991); doi: 10.1117/12.49655
Show Author Affiliations
James M. Florence, Texas Instruments Inc. (United States)
Richard D. Juday, NASA/Johnson Space Ctr. (United States)

Published in SPIE Proceedings Vol. 1558:
Wave Propagation and Scattering in Varied Media II
Vijay K. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top