Share Email Print
cover

Proceedings Paper

Phase object imaging inside the airy disc
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The possibility of phase objects superresoluton imaging is theoretically justifieth The measurements with CPM " AIRYSCAN" showed the reality of O structures observations when the Airy disc di ameter i s 0 86 j. . m SUMMARY It has been known that the amount of information contained in the image of any object is mostly determined by the number of points measured i ndependentl y or by spati al resol uti on of the system. From the classic theory of the optical systems it follows that for noncoherent sources the -spatial resolution is limited by the aperture dd 6LX/N. A. ( Rayleigh criterion where X is wave length NA numerical aperture. ) The use of this criterion is equivalent tO the statement that any object inside the Airy disc of radius d that is the difraction image of a point is practical ly unresolved. However at the coherent illumination the intensity distribution in the image plane depends also upon the phase iq (r) of the wave scattered by the object and this is the basis of the Zernike method of phasecontrast microscopy differential interference contrast (DIC) and computer phase microscopy ( CPM ). In theoretical foundation of these methods there was no doubt in the correctness of Rayleigh criterion since the phase information is derived out of intensity distribution and as we know there were no experiments that disproved this

Paper Details

Date Published: 1 March 1991
PDF: 3 pages
Proc. SPIE 1392, Advanced Techniques for Integrated Circuit Processing, (1 March 1991); doi: 10.1117/12.48962
Show Author Affiliations
Vladimir P. Tychinsky, Moscow Institute for Radioengineering (Russia)


Published in SPIE Proceedings Vol. 1392:
Advanced Techniques for Integrated Circuit Processing
James A. Bondur; Terry R. Turner, Editor(s)

© SPIE. Terms of Use
Back to Top