Share Email Print
cover

Proceedings Paper

Non-quasi-static (NQS) thermal noise modeling of the MOS transistor
Author(s): Alain-Serge Porret; Christian C Enz
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

This paper presents a non-quasi-static (NQS) thermal noise model of the MOS transistor that is valid in all modes of operation, from weak to strong inversion, and up to frequencies which are near or above the NQS cut-off frequency. It is shown that in addition to the well-known induced gate noise (IGN) there is also an induced substrate noise that is generated and that the source and drain noises are also affected. All prior publications on the subject only deal with IGN in strong inversion regime. It is shown that significant differences are obtained for moderate and weak inversion operation. The paper starts with a brief review of NQS model valid in all modes of operation. It then presents a general thermal noise model using four noisy current sources. The power spectral and cross power spectral densities of these noise sources are computed. A first-order approximation is then derived and compared to the complete model. Noise excess factors for the drain and the gate noise are then calculated and the correlation coefficient between the drain and the gate noise is obtained. It is shown that this correlation factor is always null in conduction (VD = VS), and varies in saturation between j0.6 in weak inversion to j0.4 in strong inversion. To our knowledge, it is the first time that a complete HF thermal noise model of the MOST is presented, that is valid in all modes of inversion and up to and above the NQS cut-off frequency.

Paper Details

Date Published: 12 May 2003
PDF: 15 pages
Proc. SPIE 5113, Noise in Devices and Circuits, (12 May 2003); doi: 10.1117/12.488835
Show Author Affiliations
Alain-Serge Porret, Xceive Corp. (United States)
Christian C Enz, Swiss Ctr. for Electronics and Microtechnology SA (Switzerland)
Swiss Federal Institute of Technology, Lausanne (Switzerland)


Published in SPIE Proceedings Vol. 5113:
Noise in Devices and Circuits
M. Jamal Deen; Zeynep Celik-Butler; Michael E. Levinshtein, Editor(s)

© SPIE. Terms of Use
Back to Top