Share Email Print
cover

Proceedings Paper

The importance of background in the detection and identification of gas plumes using emissive infrared hyperspectral sensing
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Using a Fourier transform infrared field spectrometer, spectral infrared radiance measurements were made of several generated gas plumes against both a uniform sky and terrestrial background. Background temperature, spectral complexity, and physical homogeneity each influenced the success of emissive infrared spectral sensing technology in detecting and identifying the presence of a gas plume and its component constituents. As expected, high temperature contrast and uniform backgrounds provided the best conditions for detectibility and diagnostic identification. This report will summarize some of SITAC's findings concerning plume detectability, including the importance of plume cooling, plumes in emission and absorption, the effects of optical thickness, and the effects of condensing plumes on gas detection.

Paper Details

Date Published: 23 September 2003
PDF: 12 pages
Proc. SPIE 5093, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery IX, (23 September 2003); doi: 10.1117/12.488188
Show Author Affiliations
Herbert J. Mitchell, Spectral Information Technology Applications Ctr. (United States)
Gerard P. Jellison, Spectral Information Technology Applications Ctr. (United States)
David P. Miller, Spectral Information Technology Applications Ctr. (United States)
Carl Salvaggio, Rochester Institute of Technology (United States)
Craig J. Miller, Spectral Information Technology Applications Ctr. (United States)


Published in SPIE Proceedings Vol. 5093:
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery IX
Sylvia S. Shen; Paul E. Lewis, Editor(s)

© SPIE. Terms of Use
Back to Top