Share Email Print
cover

Proceedings Paper

Low-frequency noise and radiation response of buried oxides in SOI nMOS transistors
Author(s): Hao D. Xiong; Daniel M. Fleetwood; James R. Schwank
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We have measured the back channel low frequency noise of 0.6um*2.3um SOI nMOS transistors with a buried oxide thickness of 170 nm as a function of frequency (f), back gate bias (Vbg ), and temperature (T). For a temperature range of, noise measurements were performed at frequencies of, with top gate grounded and Vbg-Vbgth=4V, where Vbgth is the back gate threshold voltage. After zero-bias X-ray irradiation, the noise power increases, in agreement with previous work on the noise response of bulk MOSFETs. The temperature and frequency dependences of the 1/f noise of back channel SOI nMOS transistors shows thermally-activated charge exchange between the Si channel and defects in the buried oxide. Comparison is made with the Dutta and Horn model of 1/f noise. Devices on one particular wafer appear to show a mixture of 1/f noise and noise due to diffusion of a hydrogen-related species.

Paper Details

Date Published: 12 May 2003
PDF: 12 pages
Proc. SPIE 5113, Noise in Devices and Circuits, (12 May 2003); doi: 10.1117/12.487870
Show Author Affiliations
Hao D. Xiong, Vanderbilt Univ. (United States)
Daniel M. Fleetwood, Vanderbilt Univ. (United States)
James R. Schwank, Sandia National Labs. (United States)


Published in SPIE Proceedings Vol. 5113:
Noise in Devices and Circuits
M. Jamal Deen; Zeynep Celik-Butler; Michael E. Levinshtein, Editor(s)

© SPIE. Terms of Use
Back to Top