Share Email Print
cover

Proceedings Paper

Empirical testing of subpixel detection of fire
Author(s): Ambrose E. Ononye; Anthony Vodacek; Robert L. Kremens; Ying Li; Danielle Merritt
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Typical existing fire detection algorithms for airborne and satellite based imagers employ the Planckian radiation in the 3.5 -5 μm and 8 - 14 μm spectral regions. These algorithms can have high false alarm rates and furthermore, the issue of validation of subpixel detection is a lingering problem. We present an empirical testing of fire detection algorithms for controlled and uniform burning and hot targets of known area. Image data sets of the targets were captured at different altitudes with the Modular Imaging Spectrometer Instrument (MISI). MISI captures hyperspectral VNIR and multispectral SWIR/MWIR/LWIR imagery. The known range of target areas ranges from larger than the MISI IFOV to less than 0.5% of the IFOV. The in situ temperatures were monitored with thermocouples and pyrometers. Spectroradiometric data of targets and backgrounds were also collected during the experiment. The data were analysed using existing algorithms as well as novel approaches. The algorithms are compared by determining the minimum resolvable fire pixel fraction.

Paper Details

Date Published: 23 September 2003
PDF: 10 pages
Proc. SPIE 5093, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery IX, (23 September 2003); doi: 10.1117/12.487210
Show Author Affiliations
Ambrose E. Ononye, Rochester Institute of Technology (United States)
Anthony Vodacek, Rochester Institute of Technology (United States)
Robert L. Kremens, Rochester Institute of Technology (United States)
Ying Li, Rochester Institute of Technology (United States)
Danielle Merritt, Rochester Institute of Technology (United States)


Published in SPIE Proceedings Vol. 5093:
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery IX
Sylvia S. Shen; Paul E. Lewis, Editor(s)

© SPIE. Terms of Use
Back to Top