Share Email Print

Proceedings Paper

Sensor validation and fusion for gas turbine vibration monitoring
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Vibration monitoring is an important practice throughout regular operation of gas turbine power systems and, even more so, during characterization tests. Vibration monitoring relies on accurate and reliable sensor readings. To obtain accurate readings, sensors are placed such that the signal is maximized. In the case of characterization tests, strain gauges are placed at the location of vibration modes on blades inside the gas turbine. Due to the prevailing harsh environment, these sensors have a limited life and decaying accuracy, both of which impair vibration assessment. At the same time bandwidth limitations may restrict data transmission, which in turn limits the number of sensors that can be used for assessment. Knowing the sensor status (normal or faulty), and more importantly, knowing the true vibration level of the system all the time is essential for successful gas turbine vibration monitoring. This paper investigates a dynamic sensor validation and system health reasoning scheme that addresses the issues outlined above by considering only the information required to reliably assess system health status. In particular, if abnormal system health is suspected or if the primary sensor is determined to be faulted, information from available “sibling” sensors is dynamically integrated. A confidence expresses the complex interactions of sensor health and system health, their reliabilities, conflicting information, and what the health assessment is. Effectiveness of the scheme in achieving accurate and reliable vibration evaluation is then demonstrated using a combination of simulated data and a small sample of a real-world application data where the vibration of compressor blades during a real time characterization test of a new gas turbine power system is monitored.

Paper Details

Date Published: 8 August 2003
PDF: 12 pages
Proc. SPIE 5107, System Diagnosis and Prognosis: Security and Condition Monitoring Issues III, (8 August 2003); doi: 10.1117/12.487206
Show Author Affiliations
Weizhong Yan, GE Global Research Ctr. (United States)
Kai F. Goebel, GE Global Research Ctr. (United States)

Published in SPIE Proceedings Vol. 5107:
System Diagnosis and Prognosis: Security and Condition Monitoring Issues III
Peter K. Willett; Thiagalingam Kirubarajan, Editor(s)

© SPIE. Terms of Use
Back to Top