Share Email Print
cover

Proceedings Paper

Soil effects on thermal signatures of buried nonmetallic landmines
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Thermal sensors hold much promise for the detection of non-metallic landmines. However, the prediction of their thermal signatures depends on a large number of factors. In this paper, an analytical solution for temperature propagation through homogeneous and layered soils is presented to predict surface temperatures as a function of soil heat flux amplitude, soil texture, soil water content, and thermal properties and burial depth of the landmine. Comparison with the numerical model HYDRUS-2D shows that the relatively simple analytical solution proposed here is reasonably accurate. The results show that an increase in soil water content has a significant effect on the thermal signature, as well as on the phase shift of the maximum temperature difference. Different soil textures have relatively little effect on the temperature at the surface. The thermal properties of the mine itself can play a significant role. It is shown that for most soils 10 cm is the maximum burial depth to produce a significant thermal signature at the surface.

Paper Details

Date Published: 11 September 2003
PDF: 9 pages
Proc. SPIE 5089, Detection and Remediation Technologies for Mines and Minelike Targets VIII, (11 September 2003); doi: 10.1117/12.487205
Show Author Affiliations
Remke L. van Dam, New Mexico Institute of Mining and Technology (United States)
Brian Borchers, New Mexico Institute of Mining and Technology (United States)
Jan M. H. Hendrickx, New Mexico Institute of Mining and Technology (United States)
Sung-ho Hong, New Mexico Institute of Mining and Technology (United States)


Published in SPIE Proceedings Vol. 5089:
Detection and Remediation Technologies for Mines and Minelike Targets VIII
Russell S. Harmon; John H. Holloway; J. T. Broach, Editor(s)

© SPIE. Terms of Use
Back to Top