Share Email Print
cover

Proceedings Paper

Dimensionality reduction in hyperspectral imagery
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In this paper we examine how the projection of hyperspectral data into smaller dimensional subspaces can effect the propagation of error. In particular, we show that the nonorthogonality of endmembers in the linear mixing model can cause small changes in band space (as, for example, from the addition of noise) to lead to relatively large changes in the estimated abundance coefficients. We also show that increasing the number of endmembers can actually lead to an increase in the amount of possible error.

Paper Details

Date Published: 23 September 2003
PDF: 12 pages
Proc. SPIE 5093, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery IX, (23 September 2003); doi: 10.1117/12.487180
Show Author Affiliations
David Gillis, U.S. Naval Research Lab. (United States)
Jeffrey H. Bowles, U.S. Naval Research Lab. (United States)
Michael E. Winter, Univ. of Hawaii (United States)


Published in SPIE Proceedings Vol. 5093:
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery IX
Sylvia S. Shen; Paul E. Lewis, Editor(s)

© SPIE. Terms of Use
Back to Top