Share Email Print

Proceedings Paper

Performance prediction model for road-constrained multiple target tracking
Author(s): Pablo O. Arambel; Eugene M. Lavely; Herbert Landau
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The performance of tracking systems depends on numerous factors including the scenario, operating conditions, and choice of tracker algorithms. For tracker system design, mission planning, and sensor resource management, the availability of a tracker performance model (TPM) for the standard measures of performance (MOPs) would be of high practical value. Ideally, the TPM has high computational efficiency, and is insensitive to the particular low-level details of highly complex algorithms and unimportant operating conditions. These characteristics would eliminate the need for high fidelity Monte Carlo simulations that are expensive and time consuming. In this paper, we describe a performance prediction model that generates track life distributions and other MOPs. The model employs a simplified Monte Carlo simulation that accounts for sensor orbits, sensor coverage, target dynamics. A key feature is an analytical expression that approximates the probability of correct association (PCA) among reports and tracks. The expression for the PCA that we use was developed by Mori et. al. for simplified scenarios where there is a single class of targets, the noise is Gaussian, and the covariance matrices are identical for all targets. Based on heuristic considerations, we extend this result to the case of road-constrained tracking where both on-road and off-road targets are present. We investigate the validity of the proposed expression by means of Monte Carlo simulations, and present preliminary results of a validation study that compares the performance of an actual tracker with the performance predictions of our model.

Paper Details

Date Published: 25 August 2003
PDF: 12 pages
Proc. SPIE 5096, Signal Processing, Sensor Fusion, and Target Recognition XII, (25 August 2003); doi: 10.1117/12.487074
Show Author Affiliations
Pablo O. Arambel, ALPHATECH, Inc. (United States)
Eugene M. Lavely, ALPHATECH, Inc. (United States)
Herbert Landau, ALPHATECH, Inc. (United States)

Published in SPIE Proceedings Vol. 5096:
Signal Processing, Sensor Fusion, and Target Recognition XII
Ivan Kadar, Editor(s)

© SPIE. Terms of Use
Back to Top