Share Email Print
cover

Proceedings Paper

A fuzzy Petri-net-based mode identification algorithm for fault diagnosis of complex systems
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Complex dynamical systems such as aircraft, manufacturing systems, chillers, motor vehicles, submarines, etc. exhibit continuous and event-driven dynamics. These systems undergo several discrete operating modes from startup to shutdown. For example, a certain shipboard system may be operating at half load or full load or may be at start-up or shutdown. Of particular interest are extreme or “shock” operating conditions, which tend to severely impact fault diagnosis or the progression of a fault leading to a failure. Fault conditions are strongly dependent on the operating mode. Therefore, it is essential that in any diagnostic/prognostic architecture, the operating mode be identified as accurately as possible so that such functions as feature extraction, diagnostics, prognostics, etc. can be correlated with the predominant operating conditions. This paper introduces a mode identification methodology that incorporates both time- and event-driven information about the process. A fuzzy Petri net is used to represent the possible successive mode transitions and to detect events from processed sensor signals signifying a mode change. The operating mode is initialized and verified by analysis of the time-driven dynamics through a fuzzy logic classifier. An evidence combiner module is used to combine the results from both the fuzzy Petri net and the fuzzy logic classifier to determine the mode. Unlike most event-driven mode identifiers, this architecture will provide automatic mode initialization through the fuzzy logic classifier and robustness through the combining of evidence of the two algorithms. The mode identification methodology is applied to an AC Plant typically found as a component of a shipboard system.

Paper Details

Date Published: 8 August 2003
PDF: 10 pages
Proc. SPIE 5107, System Diagnosis and Prognosis: Security and Condition Monitoring Issues III, (8 August 2003); doi: 10.1117/12.486972
Show Author Affiliations
Nicholas C. Propes, Georgia Institute of Technology (United States)
George Vachtsevanos, Georgia Institute of Technology (United States)


Published in SPIE Proceedings Vol. 5107:
System Diagnosis and Prognosis: Security and Condition Monitoring Issues III
Peter K. Willett; Thiagalingam Kirubarajan, Editor(s)

© SPIE. Terms of Use
Back to Top