Share Email Print
cover

Proceedings Paper

Laser ablation plume of FeSi2 alloy target studied by TOF mass and optical emission spectroscopies
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Time-of-flight (TOF) mass and optical emission spectroscopies have been performed on the ablation plume from α-FeSi2 alloy target under KrF excimer laser irradiation at a fluence of 0.35-2.5J/cm2 to characterize the mass, kinetic energies and excited states of the ejected species. According to the TOF mass measurements in vacuum, the most prominent species were Si and Fe atoms and ions over the entire fluence range, in addition to Si dimer. At 0.4-0.7 J/cm2, only neutrals of Si, Fe and Si2 with the kinetic energy of around 0.2eV were observed. At the fluences above 0.7J/cm2, doubly and singly charged Si and Fe ions appeared abruptly increased their number density and kinetic energies from 6 eV at 0.7 J/cm2 to over 100 eV at 2.5 J/cm2. Consistent with the TOF mass spectra, the optical emission lines stemmed from the monatomic Si and Fe as well as Si dimer in the wavelength range of 240-800 nm in vacuum. On the other hand, we confirmed some luminescent lines appeared only in helium atmosphere of 10 Torr, suggesting the cluster formation such as FeSi.

Paper Details

Date Published: 19 February 2003
PDF: 6 pages
Proc. SPIE 4830, Third International Symposium on Laser Precision Microfabrication, (19 February 2003); doi: 10.1117/12.486562
Show Author Affiliations
Aiko Narazaki, National Institute of Advanced Industrial Science and Technology (Japan)
Tadatake Sato, National Institute of Advanced Industrial Science and Technology (Japan)
Yoshizo Kawaguchi, National Institute of Advanced Industrial Science and Technology (Japan)
Hiroyuki Niino, National Institute of Advanced Industrial Science and Technology (Japan)


Published in SPIE Proceedings Vol. 4830:
Third International Symposium on Laser Precision Microfabrication

© SPIE. Terms of Use
Back to Top