Share Email Print
cover

Proceedings Paper

Excimer laser annealing of NiTi shape memory alloy thin film
Author(s): Qiong Xie; Weimin Huang; Ming Hui Hong; Wendong Song; Tow Chong Chong
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

NiTi Shape Memory Alloy (SMA) is with great potential for actuation in microsystems. It is particularly suitable for medical applications due to its excellent biocompatibility. In MEMS, local annealing of SMA is required in the process of fabrication. In this paper, local annealing of Ni52Ti48 SMA with excimer laser is proposed for the first time. The Ni52Ti48 thin film in a thickness of 5 μm was deposited on Si (100) wafer by sputtering at room temperature. After that, the thin film was annealed by excimer laser (248nm KrF laser) for the first time. Field-Emission Scanning Electron Microscopy (FESEM) and Atomic Force Microscopy (AFM) were used to characterize the surface profile of the deposited film after laser annealing. The phase transformation was measured by Differential Scanning Calorimeter (DSC) test. It is concluded that NiTi film sputtering on Si(100) substrate at room temperature possesses phase transformation after local laser annealing but with cracks.

Paper Details

Date Published: 19 February 2003
PDF: 5 pages
Proc. SPIE 4830, Third International Symposium on Laser Precision Microfabrication, (19 February 2003); doi: 10.1117/12.486531
Show Author Affiliations
Qiong Xie, Data Storage Institute (Singapore)
Weimin Huang, Nanyang Technological Univ. (Singapore)
Ming Hui Hong, Data Storage Institute (Singapore)
Wendong Song, Data Storage Institute (Singapore)
Tow Chong Chong, Data Storage Institute (Singapore)


Published in SPIE Proceedings Vol. 4830:
Third International Symposium on Laser Precision Microfabrication
Isamu Miyamoto; Kojiro F. Kobayashi; Koji Sugioka; Reinhart Poprawe; Henry Helvajian, Editor(s)

© SPIE. Terms of Use
Back to Top