Share Email Print
cover

Proceedings Paper

ICA mixture model for unsupervised classification of non-Gaussian classes in multi/hyperspectral imagery
Author(s): Chintan A. Shah; Manoj Kumar Arora; Pramod Kumar Varshney
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Conventional remote sensing classification techniques model the data in each class with a multivariate Gaussian distribution. Inadequacy of such algorithms stems from Gaussian distribution assumption for the class-component densities, which is only an assumption rather than a demonstrable property of natural spectral classes. In this paper, we present an Independent Component Analysis (ICA) based approach for unsupervised classification of multi/hyperspectral imagery. ICA employed for a mixture model, estimates the data density in each class and models class distributions with non-Gaussian structure (i.e. leptokurtic or platykurtic p.d.f.), formulating the ICA mixture model (ICAMM). It finds independent components and the mixing matrix for each class, using the extended information-maximization learning algorithm, and computes the class membership probabilities for each pixel. We apply the ICAMM for unsupervised classification of images from a multispectral sensor - Positive Systems Multi-Spectral Imager, and a hyperspectral sensor - Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Four feature extraction techniques: Principal Component Analysis, Segmented Principal Component Analysis, Orthogonal Subspace Projection and Projection Pursuit have been considered as a preprocessing step to reduce dimensionality of the hyperspectral data. The results demonstrate that the ICAMM significantly outperforms the K-means algorithm for land cover classification of remotely sensed images.

Paper Details

Date Published: 23 September 2003
PDF: 12 pages
Proc. SPIE 5093, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery IX, (23 September 2003); doi: 10.1117/12.486382
Show Author Affiliations
Chintan A. Shah, Syracuse Univ. (United States)
Manoj Kumar Arora, Syracuse Univ. (United States)
Pramod Kumar Varshney, Syracuse Univ. (United States)


Published in SPIE Proceedings Vol. 5093:
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery IX
Sylvia S. Shen; Paul E. Lewis, Editor(s)

© SPIE. Terms of Use
Back to Top