Share Email Print
cover

Proceedings Paper

Novel light detection and sensing devices based on optical nanocomposites
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The promise, some fact and some fanciful, of nanotechnology has led to a well funded global race to develop new materials, components, and devices for use in a remarkably diverse range of applications. Towards the true realization of commercial- and defense-relevant devices, this paper focuses on passive and active optical detecting and sensing devices whose performance is markedly improved, with respect to traditional analogs, through the use of nanocomposite materials. Specifically to be discussed are efficient organic photovoltaics (OPVs) fabricated using doped and undoped carbon nanotube-containing conjugated polymers. All-organic photonic crystals based on ordered arrays of nanoparticles encapsulated in elastomeric matrices also are discussed. These nanocomposites exhibit bandstops that are highly tunable though stain generated by mechanical forces (mechano-chromism) or chemical affinity (chemo-chromism) which opens new doors for optical beam steering and chemical sensing.

Paper Details

Date Published: 1 July 2003
PDF: 8 pages
Proc. SPIE 4999, Quantum Sensing: Evolution and Revolution from Past to Future, (1 July 2003); doi: 10.1117/12.485543
Show Author Affiliations
John Ballato, Clemson Univ. (United States)
David L. Carroll, Clemson Univ. (United States)
Stephen H. Foulger, Clemson Univ. (United States)


Published in SPIE Proceedings Vol. 4999:
Quantum Sensing: Evolution and Revolution from Past to Future
Manijeh Razeghi; Gail J. Brown, Editor(s)

© SPIE. Terms of Use
Back to Top