Share Email Print
cover

Proceedings Paper

Water immersion optical lithography for the 45-nm node
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

It is possible to extend optical lithography by using immersion imaging methods. Historically, the application of immersion optics to microlithography has not been seriously pursued because of the alternative solutions available. As the challenges of shorter wavelength become increasingly difficult, immersion imaging becomes more feasible. We present results from research into 193nm excimer laser immersion lithography at extreme propagation angles (such as those produces with strong OAI and PSM). This is being carried out in a fluid that is most compatible in a manufacturable process, namely water. By designing a system around the optical properties of water, we are able to image with wavelengths down to 193nm. Measured absorption is below 0.50 cm-1 at 185nm and below 0.05 cm-1 at 193nm. Furthermore, through the development of oblique angle imaging, numerical apertures approaching 1.0 in air and 1.44 in water are feasible. The refractive index of water at 193nm (1.44) allows for exploration of the following: 1. k1 values approaching 0.17 and optical lithography approaching 35nm. 2. Polarization effects at oblique angles (extreme NA). 3. Immersion and photoresist interactions with polarization. 4. Immersion fluid composition, temperature, flow, and micro-bubble influence on optical properties (index, absorption, aberration, birefringence). 5. Mechanical requirements for imaging, scanning, and wafer transport in a water media. 6. Synthesizing conventional projection imaging via interferometric imaging.

Paper Details

Date Published: 26 June 2003
PDF: 11 pages
Proc. SPIE 5040, Optical Microlithography XVI, (26 June 2003); doi: 10.1117/12.485489
Show Author Affiliations
Bruce W. Smith, Rochester Institute of Technology (United States)
Hoyoung Kang, Rochester Institute of Technology (United States)
Anatoly Bourov, Rochester Institute of Technology (United States)
Frank Cropanese, Rochester Institute of Technology (United States)
Yongfa Fan, Rochester Institute of Technology (United States)


Published in SPIE Proceedings Vol. 5040:
Optical Microlithography XVI
Anthony Yen, Editor(s)

© SPIE. Terms of Use
Back to Top