Share Email Print
cover

Proceedings Paper

Performance evaluation and analysis of a novel 300-mm combination bake-chill station
Author(s): Arunn Narasimhan; Natarajan Ram Ramanan; Daniel J. Williams
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

DUV resists are extremely sensitive to temperature variations on the wafer during bake and chill cycles. In resist-processing tracks today, the wafer is moved by a robot or transfer arm, from the bake to chill plate. During this move, since the resist is still above the activation temperature, the wafer temperature is uncontrolled until it is placed on a chill plate. In the new station design presented here, the wafer is heated to the desired bake temperature and chilled back to room temperature before being moved by the robot, resulting in a tight temperature control of the wafer, throughout the process. Two models, axi-symmetric and three-dimensional (geometrically similar to the new station), are generated for analyzing the thermal performance of the above station. The numerical simulations, solving the momentum and energy equations in the computational domain, are performed using the commercial CFD software Fluent. The simulated temporal evolution of temperature from the beginning to the end of the bake-chill process is verified with the experimental data as measured by a 42-point OnWafer temperature sensor wafer on the new station. Methods to improve wafer surface temperature uniformity, in light of bake-chill-station mechanical and thermal design losses are discussed. Higher throughput of the cluster, a major productivity improvement contribution of this new design, is also highlighted.

Paper Details

Date Published: 12 June 2003
PDF: 11 pages
Proc. SPIE 5039, Advances in Resist Technology and Processing XX, (12 June 2003); doi: 10.1117/12.485199
Show Author Affiliations
Arunn Narasimhan, FSI International, Inc. (United States)
Natarajan Ram Ramanan, FSI International, Inc. (United States)
Daniel J. Williams, FSI International, Inc. (United States)


Published in SPIE Proceedings Vol. 5039:
Advances in Resist Technology and Processing XX
Theodore H. Fedynyshyn, Editor(s)

© SPIE. Terms of Use
Back to Top