Share Email Print
cover

Proceedings Paper

MEMS and MOEMS for National Security applications
Author(s): Marion W. Scott
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Major opportunities for microsystem insertion into commercial applications, such as telecommunications and medical prosthesis, are well known. Less well known are applications that ensure the security of our nation, the protection of its armed forces, and the safety of its citizens. Microsystems enable entirely new possibilities to meet National Security needs, which can be classed along three lines: anticipating security needs and threats, deterring the efficacy of identified threats, and defending against the application of these threats. In each of these areas, specific products that are enabled by MEMS and MOEMS are discussed. In the area of anticipating needs and threats, sensored microsystems designed for chem/bio/nuclear threats, and sensors for border and asset protection can significantly secure our borders, ports, and transportation systems. Key features for these applications include adaptive optics and spectroscopic capabilities. Microsystems to monitor soil and water quality can be used to secure critical infrastructure, food safety can be improved by in-situ identification of pathogens, and sensored buildings can ensure the architectural safety of our homes and workplaces. A challenge to commercializing these opportunities, and thus making them available for National Security needs, is developing predictable markets and predictable technology roadmaps. The integrated circuit manufacturing industry provides an example of predictable technology maturation and market insertion, primarily due to the existence of a “unit cell” that allows volume manufacturing. It is not clear that microsystems can follow an analogous path. The possible paths to affordable low-volume production, as well as the prospects of a microsystems unit cell, are discussed.

Paper Details

Date Published: 15 January 2003
PDF: 8 pages
Proc. SPIE 4979, Micromachining and Microfabrication Process Technology VIII, (15 January 2003); doi: 10.1117/12.484955
Show Author Affiliations
Marion W. Scott, Sandia National Labs. (United States)


Published in SPIE Proceedings Vol. 4979:
Micromachining and Microfabrication Process Technology VIII
John A. Yasaitis; Mary Ann Perez-Maher; Jean Michel Karam, Editor(s)

© SPIE. Terms of Use
Back to Top