Share Email Print

Proceedings Paper

Optimal interval estimation fusion based on sensor interval estimates and confidence degrees
Author(s): Yunmin Zhu; Baohua Li
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The interval estimation fusion method based on sensor interval estimates and their confidence degrees is developed. When sensor estimates are independent of each other, a combination rule to merge sensor estimates and their confidence is proposed. Moreover, two popular optimization criteria: minimizing interval length with an allowable minimum confidence degree, or maximizing confidence degree with an allowable maximum interval length are suggested. In terms of the two criteria, an optimal interval estimation fusion can be obtained based on the combined intervals and their confidence degrees. Then we can extend the results on the combined interval outputs and their confidence degrees to obtain a conditional combination rule and the corresponding optimal fault-tolerant interval estimation fusion in terms of the two criteria. It is easy to see that Marzullo’s fault-tolerant interval estimation fusion is a special case of our method. We also point out that in some sense, our combination rule is similar to the combination rule in Dempster-Shafer evidence theory. However, the confidence degrees given in this paper is summable, but they (called mass function in Dempster-Shafer evidence theory) are not there; therefore, Dempster-Shafer’s combination rule is not applicable to the interval estimation fusion.

Paper Details

Date Published: 1 April 2003
PDF: 11 pages
Proc. SPIE 5099, Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications 2003, (1 April 2003); doi: 10.1117/12.484897
Show Author Affiliations
Yunmin Zhu, Sichuan Univ. (China)
Baohua Li, Sichuan Univ. (China)

Published in SPIE Proceedings Vol. 5099:
Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications 2003
Belur V. Dasarathy, Editor(s)

© SPIE. Terms of Use
Back to Top