Share Email Print
cover

Proceedings Paper

Control challenges for extremely large telescopes
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The next generation of large ground-based optical telescopes are likely to involve a highly segmented primary mirror that must be controlled in the presence of wind and other disturbances, resulting in a new set of challenges for control. The current design concept for the California Extremely Large Telescope (CELT) includes 1080 segments in the primary mirror, with the out-of-plane degrees of freedom actively controlled. In addition to the 3240 primary mirror actuators,the secondary mirror of the telescope will also require at least 5 degree of freedom control. The bandwidth of both control systems will be limited by coupling to structural modes. I discuss three control issues for extremely large telescopes in the context of the CELT design, describing both the status and remaining challenges. First, with many actuators and sensors, the cost and reliability of the control hardware is critical; the hardware requirements and current actuator design are discussed. Second, wind buffeting due to turbulence inside the telescope enclosure is likely to drive the control bandwidth higher, and hence limitations resulting from control-structure-interaction must be understood. Finally, the impact on the control architecture is briefly discussed.

Paper Details

Date Published: 14 August 2003
PDF: 12 pages
Proc. SPIE 5054, Smart Structures and Materials 2003: Industrial and Commercial Applications of Smart Structures Technologies, (14 August 2003); doi: 10.1117/12.484661
Show Author Affiliations
Douglas G. MacMartin, California Institute of Technology (United States)


Published in SPIE Proceedings Vol. 5054:
Smart Structures and Materials 2003: Industrial and Commercial Applications of Smart Structures Technologies
Eric H. Anderson, Editor(s)

© SPIE. Terms of Use
Back to Top