Share Email Print
cover

Proceedings Paper

Synthesis and characterization of EDOT-based conducting polymer actuators
Author(s): Nathan Vandesteeg; Peter Geoffrey A. Madden; John D. Madden; Patrick A. Anquetil; Ian Warwick Hunter
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Freestanding films of poly(3,4-ethylenedioxythiopene), PEDOT, were synthesized electrochemically from a solution containing EDOT monomer, tetrabutylammonium hexafluorophosphate, and water in propylene carbonate. The films were tested mechanically under constant stresses ranging from 0.6 to 2.1 MPa and subjected to various electrochemical waveforms while immersed in a bath containing propylene carbonate and an electrolyte. The characterization resulted in observations of ultimate linear strains of 2%, strain rates of 0.003 Hz, and strain to charge densities of 4 x 10-10 m3/C, comparable to the conventional conducting polymer polypyrrole. In addition to the quantitative analysis, evidence of both anionic and cationic intercalation into the polymer is presented with a discussion of prospective mechanisms and consequences.

Paper Details

Date Published: 28 July 2003
PDF: 8 pages
Proc. SPIE 5051, Smart Structures and Materials 2003: Electroactive Polymer Actuators and Devices (EAPAD), (28 July 2003); doi: 10.1117/12.484418
Show Author Affiliations
Nathan Vandesteeg, Massachusetts Institute of Technology (United States)
Peter Geoffrey A. Madden, Massachusetts Institute of Technology (United States)
John D. Madden, Univ. of British Columbia (Canada)
Patrick A. Anquetil, Massachusetts Institute of Technology (United States)
Ian Warwick Hunter, Massachusetts Institute of Technology (United States)


Published in SPIE Proceedings Vol. 5051:
Smart Structures and Materials 2003: Electroactive Polymer Actuators and Devices (EAPAD)
Yoseph Bar-Cohen, Editor(s)

© SPIE. Terms of Use
Back to Top