Share Email Print
cover

Proceedings Paper

Acousto-ultrasonic characterization of C/SiC composites under different loading configurations
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Strong, lightweight, temperature-resistant ceramic matrix composite (CMC) materials such as carbon fiber reinforced silicon carbide (C/SiC) are being developed for use in reusable launch vehicles. C/SiC coupons were developed to investigate damage behavior due to tensile and fatigue testing. In order to describe the nature of damage in this material a nondestructive evaluation technique that can detect damage progression is necessary. This study determines acousto-ultrasonics’ (AU) capabilities and limitations for the detection of damage in these composites. AU parameters were evaluated for two sets of C/SiC coupons prior to interrupted fatigue testing. In addition, a single coupon was tested with two different loading configurations. The statistical significance of several AU parameters is determined for characterizing this composite material. Ten AU waveforms were collected along the gauge length of the C/SiC coupons prior to tensile and fatigue testing. Three operators collected the waveforms from each set of coupons to check repeatability. These waveforms were processed with an analysis routine that calculates AU parameters such as ultrasonic decay rate, the first moment of the power spectrum (M0), and the centroid of the power spectrum (fc). The results will recommend the most repeatable AU parameters and loading configuration for future evaluation of C/SiC components.

Paper Details

Date Published: 1 August 2003
PDF: 8 pages
Proc. SPIE 5046, Nondestructive Evaluation and Health Monitoring of Aerospace Materials and Composites II, (1 August 2003); doi: 10.1117/12.484292
Show Author Affiliations
Laura M. Cosgriff, Cleveland State Univ. (United States)
Richard E. Martin, Cleveland State Univ. (United States)
George Y. Baaklini, NASA Glenn Research Ctr. (United States)


Published in SPIE Proceedings Vol. 5046:
Nondestructive Evaluation and Health Monitoring of Aerospace Materials and Composites II
Andrew L. Gyekenyesi; Peter J. Shull, Editor(s)

© SPIE. Terms of Use
Back to Top