Share Email Print

Proceedings Paper

The role of epoxy resin in the mechanism of laser-generated ultrasound in carbon-fiber-reinforced composites
Author(s): Theodosia Stratoudaki; Christopher Edwards; Steve Dixon; Stuart B. Palmer
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Epoxy resins are essential to the fabrication of carbon fiber reinforced composites (CFRCs). This paper investigates laser generated ultrasound in epoxy resins using three pulsed lasers: A TEA CO2, a fundamental Nd:YAG and a XeCl excimer. In the low power thermoelastic regime, the laser beam causes the surface of the sample to expand rapidly, in times that are comparable to the rise time of the laser pulse. In non-metals the phenomenon is dominated by the optical absorption depth, which is a function both of the properties of the material and the laser wavelength, and for epoxy resins, varies from a few microns to several millimeters. Compared to the thermoelastic source in metals, a bigger volume of the material is affected, the temperature rise is less and the amplitude of the longitudinal wave is greater. This condition is referred to as "a buried thermoelastic source". In CFRCs, the superficial layer of epoxy resin (typically 50-100 microns thick) plays an important role to the generation mechanism. At the Nd:YAG wavelength the epoxy is transparent and acts as a constrained layer. At the TEA CO2 and the XeCl excimer wavelengths both the epoxy and the underlying fibers absorb strongly. Experiments were carried out on CFRC and pure epoxy resin samples, comparative results and efficiency graphs are presented.

Paper Details

Date Published: 1 August 2003
PDF: 10 pages
Proc. SPIE 5046, Nondestructive Evaluation and Health Monitoring of Aerospace Materials and Composites II, (1 August 2003); doi: 10.1117/12.484110
Show Author Affiliations
Theodosia Stratoudaki, Univ. of Warwick (United Kingdom)
Christopher Edwards, Univ. of Warwick (United Kingdom)
Steve Dixon, Univ. of Warwick (United Kingdom)
Stuart B. Palmer, Univ. of Warwick (United Kingdom)

Published in SPIE Proceedings Vol. 5046:
Nondestructive Evaluation and Health Monitoring of Aerospace Materials and Composites II
Andrew L. Gyekenyesi; Peter J. Shull, Editor(s)

© SPIE. Terms of Use
Back to Top