Share Email Print
cover

Proceedings Paper

Preprocessing of Edge of Light images: towards a quantitative evaluation
Author(s): Zheng Liu; David S. Forsyth; Anton Marincak
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A computer vision inspection system, named Edge of Light TM (EOL), was invented and developed at the Institute for Aerospace Research of the National Research Council Canada. One application of interest is the detection and quantitative measurement of “pillowing” caused by corrosion in the faying surfaces of aircraft fuselage joints. To quantify the hidden corrosion, one approach is to relate the average corrosion of a region to the peak-to-peak amplitude between two diagonally adjacent rivet centers. This raises the requirement for automatically locating the rivet centers. The first step to achieve this is the rivet edge detection. In this study, gradient-based edge detection, local energy based feature extraction, and an adaptive threshold method were employed to identify the edge of rivets, which facilitated the first step in the EOL quantification procedure. Furthermore, the brightness profile is processed by the derivative operation, which locates the pillowing along the scanning direction. The derivative curves present an estimation of the inspected surface.

Paper Details

Date Published: 1 August 2003
PDF: 9 pages
Proc. SPIE 5046, Nondestructive Evaluation and Health Monitoring of Aerospace Materials and Composites II, (1 August 2003); doi: 10.1117/12.484104
Show Author Affiliations
Zheng Liu, National Research Council (Canada)
David S. Forsyth, National Research Council (Canada)
Anton Marincak, National Research Council (Canada)


Published in SPIE Proceedings Vol. 5046:
Nondestructive Evaluation and Health Monitoring of Aerospace Materials and Composites II
Andrew L. Gyekenyesi; Peter J. Shull, Editor(s)

© SPIE. Terms of Use
Back to Top