Share Email Print

Proceedings Paper

Application of neural networks to range-Doppler imaging
Author(s): Xiaoqing Wu; Zhaoda Zhu
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The use of neural networks are investigated for 2-D range Doppler microwave imaging. The range resolution of the microwave image is obtained by transmitting a wideband signal and the cross-range resolution is achieved by the Doppler frequency gradient in the same range bin. Hopfield neural networks are used to estimate the Doppler spectrum to enhance the cross- range resolution and reduce the processing time. There is a large number of neurons needed for the high cross-range resolution. In order to cut down the number of neurons, the reflectivities are replaced with their minimum norm estimates. The original Hopfield networks converge often to a local minina instead of the global minima. Simulated annealing is applied to control the gain of Hopfield networks to yield better convergence to the global minima. Results of imaging a model airplane from real microwave data are presented.

Paper Details

Date Published: 1 October 1991
PDF: 7 pages
Proc. SPIE 1569, Stochastic and Neural Methods in Signal Processing, Image Processing, and Computer Vision, (1 October 1991); doi: 10.1117/12.48403
Show Author Affiliations
Xiaoqing Wu, Nanjing Aeronautical Institute (China)
Zhaoda Zhu, Nanjing Aeronautical Institute (China)

Published in SPIE Proceedings Vol. 1569:
Stochastic and Neural Methods in Signal Processing, Image Processing, and Computer Vision
Su-Shing Chen, Editor(s)

© SPIE. Terms of Use
Back to Top