Share Email Print

Proceedings Paper

Modeling of a piezoelectric beam on a semi-infinite elastic strip
Author(s): Balajee Ananthasayanam; Eric M. Austin
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We have developed a detailed model for a piezoelectric patch bonded perfectly to a semi-infinite substrate. There are well-established techniques for representing the effects of piezoelectric actuation on a flexible substrate by equivalent moments, but the accuracy of moments rely on classical beam behavior in both the actuation and substrate layers. The goal of the work presented here is to present a model capable of predicting both the actuation and sensing ability of a smart material on a general substrate. The piezoelectric layer is modeled by classical beam theory, but no kinematic assumptions other than plane strain are imposed on the substrate. Equilibrium is enforced between the piezoelectric patch and the surface tractions over the interface region, and standard Euler-Bernoulli beam theory is then used to form integral equations in terms of the displacement gradients at the interface with the substrate. Green's functions are then derived for a semi-infinite substrate using techniques from contact mechanics. There is no loss of generality in choosing a semi-infinite substrate since the effects of actuation by a patch disappear quickly outside the contact region. Preliminary results that both validate the current model and support the equivalent-moment action models for certain substrates are presented.

Paper Details

Date Published: 1 August 2003
PDF: 11 pages
Proc. SPIE 5049, Smart Structures and Materials 2003: Modeling, Signal Processing, and Control, (1 August 2003); doi: 10.1117/12.484016
Show Author Affiliations
Balajee Ananthasayanam, Clemson Univ. (United States)
Eric M. Austin, Clemson Univ. (United States)

Published in SPIE Proceedings Vol. 5049:
Smart Structures and Materials 2003: Modeling, Signal Processing, and Control
Ralph C. Smith, Editor(s)

© SPIE. Terms of Use
Back to Top