Share Email Print
cover

Proceedings Paper

Surface and line-edge roughness in acid-breakable resin-based positive resist
Author(s): Toshio Sakamizu; Hiroshi Shiraishi
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A positive chemical amplification resist based on acid-catalyzed fragmentation of acetal groups in its main-chain has been developed as a means for reducing line-edge roughness. The resist consists of an acid-generator, an acid-diffusion controller and an acid-breakable (AB) resin that is synthesized through a co-condensation reaction between polyphenol and aromatic multi-functional vinylether compound. The effects of the fractionation of AB resins on resin properties and line-edge roughness (LER) are evaluated. Although AB resins have wide molecular-weight distributions, the density of acetal groups in this AB resin is found to be almost constant except in the lower molecular-weight components. The resist with a fractionated resin from which such components removed provides the high resolution of 60-nm line-and-space (L/S) patterns with fairly low LER. AFM analysis shows the surface roughness (SR) for the resist with the fractionated resin is smaller than that for a resist using non-fractionated AB resin, and that the SR value is not altered throughout the range of exposure doses up to just below the beginning of dissolution. By using the fractionated AB resin, the AB resin-based resist (ABR) is capable of forming sub-100 nm L/S patterns with less than 5 nm of LER (3σ).

Paper Details

Date Published: 12 June 2003
PDF: 10 pages
Proc. SPIE 5039, Advances in Resist Technology and Processing XX, (12 June 2003); doi: 10.1117/12.483773
Show Author Affiliations
Toshio Sakamizu, Hitachi, Ltd. (Japan)
Hiroshi Shiraishi, Hitachi, Ltd. (Japan)


Published in SPIE Proceedings Vol. 5039:
Advances in Resist Technology and Processing XX
Theodore H. Fedynyshyn, Editor(s)

© SPIE. Terms of Use
Back to Top