Share Email Print
cover

Proceedings Paper

157-nm bilayer resist: patterning and etching performance
Author(s): Seiro Miyoshi; Takamitsu Furukawa; Etsurou Kawaguchi; Toshiro Itani
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A highly transparent (60% transmittance at 120-nm thickness: abs.=1.85/μm), fluorine-containing, silsesquioxane-type resist for 157-nm lithography has been developed. When the resist was exposed with a 0.85-numerical-aperture (0.85-NA) microstepper and a phase-shifting mask, the high transmittance resulted in a steep profile for a 55-nm 1:1 line and space (L/S) pattern, as well as a feasible depth of focus (DOF) of 0.2 μm for a 100-nm contact hole (C/H) pattern. By using a 157-bi-layer resist process, which employed 120 nm of silsesquioxane-type resist as the top layer and a 200-nm-thick organic film as the underlayer, a sub-100-nm C/H pattern could be successfully fabricated and transferred to a 400-nm-thick SiO2 film by reactive ion etching (RIE). Neither pattern deformation during RIE nor residue after resist ashing was observed. The successful fabrication of a sub-100-nm C/H pattern in 400-nm-thick SiO2 clearly demonstrated the advantage of the 157-nm bi-layer resist process for fabricating sub-65-nm-node semiconductor devices, especially C/H fabrication or damascene process.

Paper Details

Date Published: 12 June 2003
PDF: 10 pages
Proc. SPIE 5039, Advances in Resist Technology and Processing XX, (12 June 2003); doi: 10.1117/12.483769
Show Author Affiliations
Seiro Miyoshi, Semiconductor Leading Edge Technologies, Inc. (Japan)
Takamitsu Furukawa, Semiconductor Leading Edge Technologies, Inc. (Japan)
Etsurou Kawaguchi, Semiconductor Leading Edge Technologies, Inc. (Japan)
Toshiro Itani, Semiconductor Leading Edge Technologies, Inc. (Japan)


Published in SPIE Proceedings Vol. 5039:
Advances in Resist Technology and Processing XX
Theodore H. Fedynyshyn, Editor(s)

© SPIE. Terms of Use
Back to Top