Share Email Print

Proceedings Paper

Properties of orthogonal Stewart platforms
Author(s): John E. McInroy
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

When using a Gough-Stewart Platform (GSP) for a vibration isolation or precision motion task, the geometry of that GSP is often chosen on an ad hoc basis. This can result in a number of problems: singularities or poor conditioning; inability to produce desired motions or forces; high dynamic coupling between axes; poor fault tolerance. This paper will show that the class of orthogonal GSPs has a number of useful properties. Denoting the mapping from Cartesian payload velocities to strut velocities as a 6x6 matrix M, orthogonal GSPs are those where either the rows or columns of M are orthogonal. In other words, either MMT or MTM are diagonal matrices. This paper will derive the properties of orthogonal GSPs wherein MMT is diagonal. In particular, it will first discuss the possible geometries that yield orthogonal GSPs. This will make it clear when these geometries are appropriate for a desired application. By re-arranging the rows and columns of M, a block diagonal form is found. Based on this block diagonal form, methods of designing Stewart platforms meeting desired position and force specifications are derived.

Paper Details

Date Published: 5 August 2003
PDF: 12 pages
Proc. SPIE 5056, Smart Structures and Materials 2003: Smart Structures and Integrated Systems, (5 August 2003); doi: 10.1117/12.483460
Show Author Affiliations
John E. McInroy, Univ. of Wyoming (United States)

Published in SPIE Proceedings Vol. 5056:
Smart Structures and Materials 2003: Smart Structures and Integrated Systems
Amr M. Baz, Editor(s)

© SPIE. Terms of Use
Back to Top