Share Email Print
cover

Proceedings Paper

Laser-based ultrasound measurements of optical absorption depth in epoxy resins
Author(s): Theodosia Stratoudaki; Christopher Edwards; Stephen Dixon; Stuart B. Palmer
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Pulsed lasers can generate ultrasound from stresses due to rapid thermal expansion. In this low power thermoelastic regime the material is not damaged. This paper concentrates on epoxy resins and aims to relate the observed amplitude of the longitudinal wave to the optical absorption depth of the epoxy. The ultrasound is generated using a high power pulsed laser and the absolute amplitude of the ultrasound is measured with a Michelson interferometer. In the thermoelastic regime, the laser beam is focused onto the sample, causing rapid expansion in times that are comparable to the rise time of the laser pulse. In metals, the laser radiation is absorbed in the thin electromagnetic skin depth but in non-metals the phenomenon is dominated by the optical absorption depth. The latter can vary from a few microns to several millimetres for materials such as epoxy resins. As a consequence, a bigger volume of the material is affected, the temperature rise is less and the amplitude of the longitudinal wave is greater. This condition is referred to as “a buried thermoelastic source”. Two lasers were used in this study: a TEA CO2 and a XeCl excimer laser. The results are compared with optical transmission measurements.

Paper Details

Date Published: 12 September 2002
PDF: 7 pages
Proc. SPIE 4915, Lasers in Material Processing and Manufacturing, (12 September 2002); doi: 10.1117/12.482903
Show Author Affiliations
Theodosia Stratoudaki, Univ. of Warwick (United Kingdom)
Christopher Edwards, Univ. of Warwick (United Kingdom)
Stephen Dixon, Univ. of Warwick (United Kingdom)
Stuart B. Palmer, Univ. of Warwick (United Kingdom)


Published in SPIE Proceedings Vol. 4915:
Lasers in Material Processing and Manufacturing
ShuShen Deng; Tatsuo Okada; Klaus Behler; XingZong Wang, Editor(s)

© SPIE. Terms of Use
Back to Top