Share Email Print

Proceedings Paper

Strong narrowband peak at 13.5-nm generated in a cavity-confined tin plasma
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We succeeded in generating a strong narrowband peak at 13.7 nm in a cavity confined Sn plasma. Fraction of the energy within 2% bandwidth at 13.7 nm against the total radiation spectrum was 11.3%. In our experiment, the plasma is generated not on a solid plate but in a cavity as described below. A YAG laser pulse ablates the surface of a concave structure Sn target in order to supply the material for plasma generation. The next laser pulse with 1064nm wavelength heats the ablated material to generate a high temperature plasma. The ablation YAG laser is focused to 600μm diameter with a flux of 10 J/cm2. The heating YAG laser is focused to 100μm diameter at a delay time of 30 ns after the laser ablation. Emission spectra are observed using a grazing incidence Hitachi flat-field grating and a back side illuminated CCD detector. Fraction of the energy at 13.7nm within 2% bandwidth in the whole radiation energy was 11.3%. However, the intensity of the spectrum peak was about 1/10 against the plane Sn target LPP source. When nano (less than 200 nm diameter) particle SnO2 deposited on a 100nm-thick Si3N4 membrane were irradiated, a sharp peak was observed. The intensity of the spectral peak of the nano particle SnO2 target LPP source was as high as that of the plane Sn target LPP source. The EUV energy within 2% bandwidth at around 13.7 nm to the whole radiation energy of the nano particle SnO2 target LPP source was 7.4%.

Paper Details

Date Published: 16 June 2003
PDF: 8 pages
Proc. SPIE 5037, Emerging Lithographic Technologies VII, (16 June 2003); doi: 10.1117/12.482631
Show Author Affiliations
Tatsuya Aota, Japan Society for the Promotion of Science (Japan)
Hidehiko Yashiro, AIST (Japan)
Yoshifumi Ueno, AIST (Japan)
Toshihisa Tomie, AIST (Japan)

Published in SPIE Proceedings Vol. 5037:
Emerging Lithographic Technologies VII
Roxann L. Engelstad, Editor(s)

© SPIE. Terms of Use
Back to Top