Share Email Print

Proceedings Paper

Energy conversion in laser propulsion: III
Author(s): Carl William Larson; Franklin B. Mead; Wayne M. Kalliomaa
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Conversion of pulses of CO2 laser energy (18 microsecond pulses) to propellant kinetic energy was studied in a Myrabo Laser Lightcraft (MLL) operating with laser heated STP air and laser ablated delrin propellants. The MLL incorporates an inverted parabolic reflector that focuses laser energy into a toroidal volume where it is absorbed by a unit of propellant mass that subsequently expands in the geometry of the plug nozzle aerospike. With Delrin propellant, measurements of the coupling coefficients and the ablated mass as a function of laser pulse energy showed that the efficiency of conversion of laser energy to propellant kinetic energy was approximately 54%. With STP air, direct experimental measurement efficiency was not possible because the propellant mass associated with measured coupling coefficients was not known. Thermodynamics predicted that the upper limit of the efficiency of conversion of the internal energy of laser heated air to jet kinetic energy, (alpha) , is approximately 0.30 for EQUILIBRIUM expansion to 1 bar pressure. For FROZEN expansion (alpha) approximately 0.27. These upper limit efficiencies are nearly independent of the initial specific energy from 1 to 110 MJ/kg. With heating of air at its Mach 5 stagnation density (5.9 kg/m3 as compared to STP air density of 1.18 kg/m3) these efficiencies increase to about 0.55 (equilibrium) and 0.45 (frozen). Optimum blowdown from 1.18 kg/m3 to 1 bar occurs with expansion ratios approximately 1.5 to 4 as internal energy increases from 1 to 100 MJ/kg. Optimum expansion from the higher density state requires larger expansion ratios, 8 to 32. Expansion of laser ablated Delrin propellant appears to convert the absorbed laser energy more efficiently to jet kinetic energy because the effective density of the ablated gaseous Delrin is significantly greater than that of STP air.

Paper Details

Date Published: 13 September 2002
PDF: 12 pages
Proc. SPIE 4760, High-Power Laser Ablation IV, (13 September 2002); doi: 10.1117/12.482043
Show Author Affiliations
Carl William Larson, Air Force Research Lab. (United States)
Franklin B. Mead, Air Force Research Lab. (United States)
Wayne M. Kalliomaa, Air Force Research Lab. (United States)

Published in SPIE Proceedings Vol. 4760:
High-Power Laser Ablation IV
Claude R. Phipps, Editor(s)

© SPIE. Terms of Use
Back to Top