Share Email Print
cover

Proceedings Paper

Temperature stabilization of fiber Bragg grating vibration sensor with automatic wavelength control
Author(s): Nobuaki Takahashi; Weerapong Thongnum; Sumio Takahashi
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Detection of mechanical vibration with a fiber Bragg grating (FBG) based on the intensity-modulation method provides us with simplicity and compactness of the sensor as well as high sensitivity, wide dynamic range and wide frequency response in sensing. The slope of the FBG transmittance or reflectance spectrum curve at the operation wavelength determines the sensitivity of the sensor. Since the Bragg reflection wavelength of an FBG changes as the temperature of an FBG changes, it is known that the sensitivity of the sensor is dependent on temperature of the FBG and may vary considerably when the environmental temperature varies. Except for the operation under the situation in which the temperature change is small, therefore, it is generally required to stabilize the sensor against the temperature change in the environment. In this paper we propose a new method to stabilize the sensitivity of an FBG vibration sensor in the temperaturevarying environment by automatically shifting the wavelength of the source laser. The sensitivity variation of the thermally stabilized sensor is reduced down to 3 dB, which is more than 55 dB without the stabilization.

Paper Details

Date Published: 9 September 2002
PDF: 8 pages
Proc. SPIE 4920, Advanced Sensor Systems and Applications, (9 September 2002); doi: 10.1117/12.481986
Show Author Affiliations
Nobuaki Takahashi, National Defense Academy (Japan)
Weerapong Thongnum, National Defense Academy (Japan)
Sumio Takahashi, National Defense Academy (Japan)


Published in SPIE Proceedings Vol. 4920:
Advanced Sensor Systems and Applications
Yun-Jiang Rao; Julian D. C. Jones; Hiroshi Naruse; Robert I. Chen, Editor(s)

© SPIE. Terms of Use
Back to Top