Share Email Print
cover

Proceedings Paper

Tensor scale-based fuzzy connectedness image segmentation
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Tangible solutions to image segmentation are vital in many medical imaging applications. Toward this goal, a framework based on fuzzy connectedness was developed in our laboratory. A fundamental notion called "affinity" - a local fuzzy hanging togetherness relation on voxels - determines the effectiveness of this segmentation framework in real applications. In this paper, we introduce the notion of "tensor scale" - a recently developed local morphometric parameter - in affinity definition and study its effectiveness. Although, our previous notion of "local scale" using the spherical model successfully incorporated local structure size into affinity and resulted in measureable improvements in segmentation results, a major limitation of the previous approach was that it ignored local structural orientation and anisotropy. The current approach of using tensor scale in affinity computation allows an effective utilization of local size, orientation, and ansiotropy in a unified manner. Tensor scale is used for computing both the homogeneity- and object-feature-based components of affinity. Preliminary results of the proposed method on several medical images and computer generated phantoms of realistic shapes are presented. Further extensions of this work are discussed.

Paper Details

Date Published: 15 May 2003
PDF: 11 pages
Proc. SPIE 5032, Medical Imaging 2003: Image Processing, (15 May 2003); doi: 10.1117/12.481882
Show Author Affiliations
Punam K. Saha, Univ. of Pennsylvania (United States)
Jayaram K. Udupa, Univ. of Pennsylvania (United States)


Published in SPIE Proceedings Vol. 5032:
Medical Imaging 2003: Image Processing
Milan Sonka; J. Michael Fitzpatrick, Editor(s)

© SPIE. Terms of Use
Back to Top