Share Email Print
cover

Proceedings Paper

Removal of organic impurities from liquid carbon dioxide
Author(s): Richard R. Zito
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The use of a high velocity stream of carbon dioxide snowflakes to clean large optics is well known, and has gained widespread acceptance in the astronomical community as a telescope maintenance technique. Ultimately, however, the success of carbon dioxide snow cleaning depends on the availability of high purity carbon dioxide. The higher the purity of the carbon dioxide, the longer will be the time interval between required mirror washings. The highest grades of commercially produced liquid carbon dioxide are often not available in the more remote regions of the world - such as where major astronomical observatories are often located. Furthermore, the purity of even the highest grades of carbon dioxide are only nominal, and wide variations are known to occur from tank to tank. Occasionally, visible deposits of organic impurities are left behind during cleaning with carbon dioxide that is believed to be 99.999% pure. A zeolite molecular sieve based filtration system has proven to be very effective in removing these organic impurities. A zeolite is a complex alumino-silicate. One example has an empirical formula of (see paper for formula). The zeolites have an open crystal structure and are capable of trapping impurities like 8-methylheptadecane (an oil) and 2,6-octadine-1-ol,3,7- dimethyl-,(E)- (a fatty acid). In fact, a zeolite can trap 29.5% of its own weight in SAE 20 lubricant at 25 degree(s)C. After filtration of liquid CO2 through zeolites, the concentration of measured impurities was below the detection limit for state-of-the-art gas chromatography systems.

Paper Details

Date Published: 11 September 2002
PDF: 22 pages
Proc. SPIE 4774, Optical System Contamination: Effects, Measurements, and Control VII, (11 September 2002); doi: 10.1117/12.481663
Show Author Affiliations
Richard R. Zito, Richard R. Zito R & D Corp. (United States)


Published in SPIE Proceedings Vol. 4774:
Optical System Contamination: Effects, Measurements, and Control VII
Philip T. C. Chen; O. Manuel Uy, Editor(s)

© SPIE. Terms of Use
Back to Top