Share Email Print
cover

Proceedings Paper

Sieve-regularized image reconstruction algorithm with pose search in transmission tomography
Author(s): Ryan J. Murphy; Donald L. Snyder; David G. Politte; Joseph A. O'Sullivan
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We have developed a model for transmission tomography that views the detected data as being Poisson-distributed photon counts. From this model, we derive an alternating minimization (AM) algorithm for the purpose of image reconstruction. This algorithm, which seeks to minimize an objective function (the I-divergence between the measured data and the estimated data), is particularly useful when high-density objects are present in soft tissue and standard image reconstruction algorithms fail. The approach incorporates inequality constraints on the pixel values and seeks to exploit known information about the high-density objects or other priors on the data. Because of the ill-posed nature of this problem, however, the noise and streaking artifacts in the images are not completely mitigated, even under the most ideal conditions, and some form of regularization is required. We describe a sieve-based approach, which constrains the image estimate to reside in a subset of the image space in which all images have been smoothed with a Gaussian kernel. The kernel is spatially varying and does not smooth across known boundaries in the image. Preliminary results show effective reduction of the noise and streak artifacts, but indicate that more work is needed to suppress edge overshoots.

Paper Details

Date Published: 15 May 2003
PDF: 8 pages
Proc. SPIE 5032, Medical Imaging 2003: Image Processing, (15 May 2003); doi: 10.1117/12.481362
Show Author Affiliations
Ryan J. Murphy, Washington Univ. (United States)
Donald L. Snyder, Washington Univ. (United States)
David G. Politte, Washington Univ. (United States)
Joseph A. O'Sullivan, Washington Univ. (United States)


Published in SPIE Proceedings Vol. 5032:
Medical Imaging 2003: Image Processing
Milan Sonka; J. Michael Fitzpatrick, Editor(s)

© SPIE. Terms of Use
Back to Top