Share Email Print
cover

Proceedings Paper

Automatic segmentation of brain infarction in diffusion-weighted MR images
Author(s): Wu Li; Jie Tian
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

It is important to detect the site and size of infarction volume in stroke patients. An automatic method for segmenting brain infarction lesion from diffusion weighted magnetic resonance (MR) images of patients has been developed. The method uses an integrated approach which employs image processing techniques based on anisotropic filters and atlas-based registration techniques. It is a multi-stage process, involving first images preprocessing, then global and local registration between the anatomical brain atlas and the patient, and finally segmentation of infarction volume based on region splitting and merging and multi-scale adaptive statistical classification. The proposed multi-scale adaptive statistical classification model takes into account spatial, intensity gradient, and contextual information of the anatomical brain atlas and the patient. Application of the method to diffusion weighted imaging (DWI) scans of twenty patients with clinically determined infarction was carried out. It shows that the method got a satisfied segmentation even in the presence of radio frequency (RF) inhomogeneities. The results were compared with lesion delineations by human experts, showing the identification of infarction lesion with accuracy and reproducibility.

Paper Details

Date Published: 15 May 2003
PDF: 12 pages
Proc. SPIE 5032, Medical Imaging 2003: Image Processing, (15 May 2003); doi: 10.1117/12.481350
Show Author Affiliations
Wu Li, Institute of Automation, CAS (China)
Jie Tian, Institute of Automation, CAS (China)


Published in SPIE Proceedings Vol. 5032:
Medical Imaging 2003: Image Processing
Milan Sonka; J. Michael Fitzpatrick, Editor(s)

© SPIE. Terms of Use
Back to Top