Share Email Print
cover

Proceedings Paper

Novel photonic crystal materials based on nanocomposites
Author(s): Nobuyuki Kambe; Yigal D. Blum; Benjamin Chaloner-Gill; Christian Honeker; D. Brent MacQueen
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

An unparalleled range of photonic nanocomposites has been developed utilizing surface engineering over preformed nanoparticles. These nanocomposites cover a number of organic polymers as host materials. By controlling a loading level of inorganic nanoparticles (e.g., nano-TiO2) within a polymer host, important optical parameters including the refractive index (n) can be varied over 50~100 % with respect to the corresponding polymer matrix. This refractive index control capability enables a large refractive index contrast (Dn) that is a very significant requirement for fabrication of microphotonic devices such as photonic crystals. High levels of nanoparticle dispersion within a polymer host can be achieved even at loading levels up to 60 wt% to assure low scattering, i.e., transparent coated films in the infrared and visible light regions for photonic crystal applications. This paper presents nano-engineered polymer-based photonic crystal materials and processes to make them. Use of very uniform nanoparticles preformed by laser-driven chemical reaction is vital for successful fabrication of optical-class composite films and described here. Major benefits out of the current approach are discussed including (a) high Δn, (b) easy-to-fabricate 'hetero-interface', a minimal unit of periodic photonic crystal structures, and (c) significant economical benefit.

Paper Details

Date Published: 29 August 2002
PDF: 8 pages
Proc. SPIE 4905, Materials and Devices for Optical and Wireless Communications, (29 August 2002); doi: 10.1117/12.481020
Show Author Affiliations
Nobuyuki Kambe, NeoPhotonics Corp. (United States)
Yigal D. Blum, SRI International (United States)
Benjamin Chaloner-Gill, NeoPhotonics Corp. (United States)
Christian Honeker, NeoPhotonics Corp. (United States)
D. Brent MacQueen, SRI International (United States)


Published in SPIE Proceedings Vol. 4905:
Materials and Devices for Optical and Wireless Communications
Constance J. Chang-Hasnain; YuXing Xia; Kenichi Iga, Editor(s)

© SPIE. Terms of Use
Back to Top