Share Email Print

Proceedings Paper

Fast and robust method to compute colon centerline in CT colonography
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We developed a method for generating the centerline of a colon in CT Colonography that is computationally fast, and robust to collapsed regions. Patients underwent CT Colonography after standard pre-colonoscopy cleansing. The colonic lumen was segmented using an existing anatomy-based approach, and a distance map of the colonic lumen was computed using a distance transform. The centerline was computed as follows: Local maxima representative for the centerline were sparsely extracted from the distance map. Iteratively, each pair of maxima satisfying a set of connection criteria were connected, creating a graph-like structure containing a main centerline with additional branches. Branches were later removed and the resulting centerline was stored. Centerlines of the colon were computed, and also manually and independently drawn by two radiologists, for 33 CT Colonographic data sets. The data sets were chosen to give a wide spectrum of colons, ranging from cases with good segmentation and extension to cases with collapsed regions and numerous extra-colonic components such as small bowel. On average, 94% of the human-generated centerlines were correctly identified by the computer-generated centerlines. The average displacement between the human- and computer-generated centerlines was 4.0 mm. Average centerline computation time was less than 4 seconds.

Paper Details

Date Published: 2 May 2003
PDF: 7 pages
Proc. SPIE 5031, Medical Imaging 2003: Physiology and Function: Methods, Systems, and Applications, (2 May 2003); doi: 10.1117/12.480666
Show Author Affiliations
Hans Frimmel, Univ. of Chicago (United States)
Janne J. Naeppi, Univ. of Chicago (United States)
Hiroyuki Yoshida, Univ. of Chicago (United States)

Published in SPIE Proceedings Vol. 5031:
Medical Imaging 2003: Physiology and Function: Methods, Systems, and Applications
Anne V. Clough; Amir A. Amini, Editor(s)

© SPIE. Terms of Use
Back to Top