Share Email Print
cover

Proceedings Paper

Optimal radiographic techniques for digital mammograms obtained with an amorphous selenium detector
Author(s): Michael J. Flynn; Charles Dodge; Donald J. Peck; Ann Swinford
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Traditional film/screen mammograms are obtained using Molybdenum or Rhodium target x-ray tubes. The energy spectrum from these sources matches the limited latitude of film/screen systems. For digital imaging systems, the latitude is linear over a wide range of exposures and arbitrary H&D curves can be obtained with image processing. This allows the recorded contrast to noise ratio (CNR) to be optimized by considering a wide range of radiographic techniques. For this work, we modeled the radiographic process for a digital (amorphous selenium) mammography system. The optimal CNR relative to dose was determined for several target/filter combinations, for a wide range of kVp values, and for varying breast thickness. The target/filter combinations included: Mo/Mo, Mo/Rh, Rh/Rh, W/Al, W/Mo, W/Ag, and W/Sn. As breast thickness increased, the use of a tungsten target with a tin filter resulted in a 34% improvement in CNR for the same dose to the breast when compared to the use of a Molybdenum target with a Molybdenum filter. Notably, the W/Sn target/filter combination resulted in a significantly lower mA-s for the same breast dose (2/3 to 1/5 lower for a breast thickness from 4 to 8cm). In mammography applications, use of a Tungsten tube rather than the traditional Molybdenum tube should lead to significant reductions in exposure time and tube heat while maintaining similar image quality and dose.

Paper Details

Date Published: 5 June 2003
PDF: 10 pages
Proc. SPIE 5030, Medical Imaging 2003: Physics of Medical Imaging, (5 June 2003); doi: 10.1117/12.480486
Show Author Affiliations
Michael J. Flynn, Henry Ford Health System (United States)
Charles Dodge, Henry Ford Health System (United States)
Wayne State Univ. (United States)
Donald J. Peck, Henry Ford Health System (United States)
Wayne State Univ. (United States)
Ann Swinford, Henry Ford Health System (United States)


Published in SPIE Proceedings Vol. 5030:
Medical Imaging 2003: Physics of Medical Imaging
Martin J. Yaffe; Larry E. Antonuk, Editor(s)

© SPIE. Terms of Use
Back to Top