Share Email Print

Proceedings Paper

Analytical solution to 3D SPECT reconstruction with nonuniform attenuation, scatter, and spatially variant resolution variation for variable focal-length fan-beam collimators
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In the past decades, analytical (non-iterative) methods have been extensively investigated and developed for the reconstruction of three-dimensional (3D) single-photon emission computed tomography (SPECT). However, it becomes possible only recently when the exact analytic non-uniform attenuation reconstruction algorithm was derived. Based on the explicit inversion formula for the attenuated Radon transform discovered by Novikov (2000), we extended the previous researches of inverting the attenuated Radon transform of parallel-beam collimation geometry to fan-beam and variable focal-length fan-beam (VFF) collimators and proposed an efficient, analytical solution to 3D SPECT reconstruction with VFF collimators, which compensates simultaneously for non-uniform attenuation, scatter, and spatially-variant or distance-dependent resolution variation (DDRV), as well as suppression of signal-dependent non-stationary Poisson noise. In this procedure, to avoid the reconstructed images being corrupted by the presence of severe noise, we apply a Karhune-Loève (K-L) domain adaptive Wiener filter, which accurately treats the non-stationary Poisson noise. The scatter is then removed by our scatter estimation method, which is based on the energy spectrum and modified from the triple-energy-window acquisition protocol. For the correction of DDRV, a distance-dependent deconvolution is adapted to provide a solution that realistically characterizes the resolution kernel in a real SPECT system. Finally image is reconstructed using our VFF non-uniform attenuation inversion formula.

Paper Details

Date Published: 15 May 2003
PDF: 10 pages
Proc. SPIE 5032, Medical Imaging 2003: Image Processing, (15 May 2003); doi: 10.1117/12.480472
Show Author Affiliations
Junhai Wen, SUNY/Stony Brook (United States)
Hongbing Lu, SUNY/Stony Brook (United States)
Tianfang Li, SUNY/Stony Brook (United States)
Zhengrong Liang, SUNY/Stony Brook (United States)

Published in SPIE Proceedings Vol. 5032:
Medical Imaging 2003: Image Processing
Milan Sonka; J. Michael Fitzpatrick, Editor(s)

© SPIE. Terms of Use
Back to Top